
R- 5 60-N AS pal
December 1970

SANTA MONICA. CA. 90406

This research i s sponsored by the National Aeronautics and Space
Administration under Contract No. NAS- 12-21-44 and the United
States Air Force under Project Rand- Contract No e F44620-67-C-0045-
monitored by the Directorate of Operational Requirements and Development
Plans I Deputy Chief of Staff , Researc h and Development I Hq USAF e Views
or conclusions contained in this study should not be interpreted as representing
the official opinion or policy of Rand, NASA or of the United States Air Force.

ERRATA

R-560-NASA/PR EXPERIENCE WITH THE EXTENDABW CONPUTER SYSTEM
SIMULATOR, D. W, KOSY, 12-70

Page 15 - L a s t paragraph e n t i t l e d "AUTOMATIC SUMMARIES" - F i r s t l i n e

Following "A computer system", add t h e word "s imulator"

REPORTS
DEPARTMENT

Ra
SANTA MONICA, CA. 90406

I

6O-NASA/

ecem ber 1970

. W. K Q S ~

SANTA MONICA, CA 90406

Rand maintains a number of special, subject bibliographies containing abstracts of
Rand publications in fields of wide current interest. The following bibliographies are
available upon request:

Africa a Arms Control 0 Civil Defense e Combinatorics
Communication Satellites e Communication Systems e Communist China

Computing Technology e Decisionmaking e East- West Trade
Education e Foreign Aid e Health-related Research e Latin America

Linguistics Long-range Forecasting e Maintenance
Mathematical Modeling of Physiological Processes e Middle East

Policy Sciences e Pollution e Procurement and R&D Strategy
Program Budgeting e SIMSCRIPT and Its Applications e Southeast Asia

Systems Analysis e Television 0 Urban Problems e USSR
Water Resources e Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain
copies of individual publications, write to: Communications Department, Rand,

in Street, Santa Monica, California 90406.

Published by The Rand Corporation

PREFACE

Although the value of performing simulation analyses
for the design and evaluation of military and aerospace
computer systems is recognized, and designers and users
of such systems often desire to employ this tool, the dif-
ficulty and expense of developing sufficiently detailed
models is often prohibitive. The Air Force, in particular,
requires a powerful and flexible simulation capability to
evaluate present and proposed systems. Accordingly, we
have developed the Extendable Computer System Simulator
(ECSS) to permit system models to be built more rapidly
and at less cost than previously possible. Although the
original devekopment of ECSS was sponsored by NASA, work
on it was continued under Air Force Project RAND. It has
a particular relevance to work being done for the Air Force
Logistics Command on the large hardware/software effort
contained in the Advanced Logistics System (ALS) .

ECSS is a special-purpose language for computer s y s -

tem modeling. The original design is presented in N. R e
Nielsen, ECSS: A n E x t e n d a b l e Computer S y s t e m S i m u l a t o r ,
The RAND Corporation, RM-6132-NASA, February 1970. The
present Report discusses Rand experience with the ini-
tial version of the language, outlines its strengths and
weaknesses, and offers some general principles for im-
proving the language with respect to user capability and
convenience.

This Report should be of interest to potential users
of ECSS and to other designers of computer system modeling
languages. The reader should be familiar with computer
system concepts and terminology, and with discrete-event
simulation, Some knowledge of SIMSCRIPT I1 programming
language is required to completely understand the ECSS
example program in Appendix B ,

-V-

SUMMARY

A pro to type v e r s i o n of t h e Extendable Computer System
Simulator (ECSS) has been implemented t o a i d i n c o n s t r u c t i n g
s imula t ion models of computer systems. A s p e c i a l i z e d lan-
guage i s used t o d e s c r i b e hardware, sof tware , and system
load. A s e r v i c e - r o u t i n e package handles many of t h e house-
keeping d e t a i l s of model c o n t r o l . The full power of
SIMSCRIPT I1 i s a l s o a v a i l a b l e f o r extending ECSS capab i l -
i t i es . Advantages of ECSS over o t h e r languages inc lude i t s

n a t u r a l , Eng l i sh - l ike i n p u t format , p rov i s ions f o r compact
d e s c r i p t i o n of common computing system elements and opera-
t i o n s , f l e x i b i l i t y , e x t e n d a b i l i t y , m o d i f i a b i l i t y , and pro-
v i s i o n s for economical s imula t ion r e runs .

Some weaknesses i n t h e provided f a c i l i t i e s have been

n o t i c e d , however, i n t h a t c e r t a i n f e a t u r e s are e i t h e r
absen t o r less convenient than they should be. Summary
r e p o r t s of model s t r u c t u r e , f o r example, are n o t produced,
nor a r e s ta t i s t ics on model ope ra t ion c o l l e c t e d o r r epor t ed .
The u s e r f i n d s some mechanisms n o t as a c c e s s i b l e or con-
t ro l l ab le as s o m e t i m e s needed. Moreover, c e r t a i n c o n t r o l -
program models r e q u i r e a very awkward r e p r e s e n t a t i o n with-
i n ECSS.

R e f l e c t i o n on t h e s t r e n g t h s and weaknesses of t h i s
ECSS p ro to type s t i m u l a t e d a l i s t of des ign f a c t o r s f o r
computer system s imula to r s . Some cons ide ra t ions are:
1) d e c l a r a t i v e model s p e c i f i c a t i o n i s more convenient , b u t
procedura l s p e c i f i c a t i o n more f l e x i b l e ; 2) powerful s ta te-
ments a l l o w qu ick development of coarse models, b u t a number

of s impler s t a t emen t s are r equ i r ed f o r more f i n e l y d e t a i l e d
models; 3) a s e r v i c e - r o u t i n e execu t ive must be e a s i l y
accessible t o allow t h e a d a p t a b i l i t y r equ i r ed of a computer
system s imula tor : and 4) c e r t a i n informat ion i s of i n t e r e s t
i n a l l computer system s imula t ions and should be a v a i l a b l e
on demand a s preformat ted r e p o r t s from t h e s imula to r ,

-vii-

CONTENTS

Section
I, INTRODUCTION O . O O . . . O . . s O . . e O O . O O O . . e .

11. REVIEW OF ECSS . . e O I . . O . . * O . O O O . O e . . .

System Description ...OI.e..........O~..o.

Load Description . . 0 0 . 0 8 0 0 s 0 . e 0 0

Service Routines . . D O . . . O O 1 O O . . e

111. ADVANTAGES OF THE ECSS APPROACH . D O

Natural Input Language .. O O . O L)

Provision of Declarations and Commands
for Common Computer System Operations

Flexibility .0...e...9.....0....0.00...0s.
Extendability O O . . * O l,..*). O . O - / . . O

Modifiability O . a O O . J O D . . O e . P

Rerun Economy O O . O O O . ~ ~ ~ ~ ~ ~ ~ .

IV, WEAKNESSES OF ECSS D * . . O . . . O D . . s . . e O

Neglected Statements and Capabilities
Hard-To-Get-At Mechanisms .e..e e . o o

Over-Automaticity . -- . , . . e) 0 . . e . 0 e

Awkward Control-Program Representation

V. DESIGN CONSIDERATIONS FOR FURTHER
ECSS DEVELOPPENT e O I . e a O . J O B a e e e i e , o . l e

Declarative Versus Procedural
Description . D 1 0 0 0 8 0 e e O Q 0 0 . . D . B ~ D s 0 0 . . . 0

Statement Scope e e * . * e e e e e e e e e

Operafing-System Accessibility o o 1 0 0 0 8 0 0 0 ~

Automatic Summaries Y B D D B C ~ ~ B B P O B ~ . . B D * B O O

Appendix
A. ECSS JOB PROCESSING O O O O O O B ~ O B B B B B B Q B B * ~ e e a s e

B , AN EXAMPLE OF THE ECSS APPROACH r e o e a s a e e a a e a

REFERENCES

1

7
7

10
10
11
12
13

14

14
14
15
15

16

17
19

27

-ix-

FIGURES

1. ECSS Device Components 3
2. ECSS Job Processing 18
3. Model Hardware Configuration 20
4. Work Flow Through Multiprogrammed

Batch Processor 21
5. Batch Processor Simulation 22-23
6. Batch Model Program Output 26

-1-

I INTRODUCTION

The Extendable Computer System Simulator (ECSS) is a
prototype language, designed and implemented to investigate
ways of making the simulation of complex computer systems
a less formidable task. The need for a new language, free
from the problems of using general-purpose languages and
the drawbacks of existing computer system simulators was
demonstrated in Neilsen, 1970 [l]. Our approach is to pro-
vide a convenient and natural means of describing computer
system characteristics and computing processes while allow-
ing the flexibility and power of a general-purpose simula-
tion language.

Experience with several small models, written to test
the initial version of the simulator, has indicated the
soundness of the approach. 1.n most cases! the models have
been quickly and easily constructed. However! situations
have also been found in which the language is not as use-
ful as possible, revealing shortcomings in both the breadth
and versatility of the facilities provided.

This Report describes the current capabilities of ECSS,
discusses ECSS strengths and weaknesses, and prescribes some
directions for further work. We first review the concepts
of the language, and list the advantages of the ECSS ap-
proach, We then outline a number of cases where the current
version of the language is not as helpful as it could be.
Finally, we present several general principles, which have
become clearer in retrospect, for the design of computer
system modeling languages, Two appendices show the details
of ECSS program processing, and provide a specific example
of a complete ECSS simulation program.

-2-

11, REVIEW OF ECSS

Three elements of ECSS are fundamental in describing
a computer system to be simulated: 1) the System Descrip-
tion section; 2) the Load Description section; and 3) the
Service Routines

SYSTEM DESCRIPTION

The System Description characterizes those system
elements considered static in ECSS. Static elements are
called d e v i c e s , reflecting their usage as models of pieces
of hardware. Declarations in this section specify the
number of the various types of hardware, the names of
these devices and names of groups of devices, the capacities
and capabilities of the devices, the interconnection of de-
vices, and the possible "software execution time overhead"
incurred by simulated operation of some devices in perform-
ing certain operations.

To model different types of hardware, the user speci-
fies ECSS devices to have the appropriate characteristics.
A l l devices are viewed as collections of up to four
components (see Fig. l), and different device character-
istics result from using different combinations of corn-
ponents. Each type of component represents a different
device capability. For some hardware models the conjunc-
tion of several components may be meaningful, e.g., in
defining a central processor to execute instructions,
transmit data, and have core storage; but often, only one
component is important, e.g., in defining a disk memory
as only a quantity of storage space. The user may choose
the combination of components necessary to model real
equipment,

Device characteristics are further specified by set-
ting parameters of the components. Each type of component
has different parameters according to that component's

-3-

ALLOCATADLE COMPONENT

TRANSMISSION COMPONENT

EXECUTl O N COMPONENT

STORAGE SFACE COMPONENT Eti
F i g , 1 - - E C S S D e v i c e Components

intended purpose. Some of these parameters are: 1) €or
Storage Space, the maximum amount: 2) for Execution, the
instruction processing rate and maximum number of jobs that
may be processed concurrently; 3) for Allocatable, whether
a device may be allocated to more than one job simultan-
eously; and 4) for Transmission, the maximum data rate,
number of simultaneous data streams that may be transmitted,
delay per transmission, and others- There are also several
parameters of interaction between components. Two of these

- 4 -

are software overhead times, used to model the software
execution necessary to initiate data transmission or de-
vice allocation, and degradation factors, used to account
for execution interference due to data transmission,

Besides characterizing individual devices, the System
Description may define groups of devices. Groups are used
for compact description (e.g., defining several devices
having the same characteristics) and for automatic device
selection at run time. Device selection is a feature of
the built-in ECSS "operating system" that allows a group
of devices to be put in a load command. This indicates that
the actual device picked to handle the command should be
the one available at any particular time during the run.
The last function of the System Description is definition
of certain data transmission paths within the system.

LOAD DESCRIPTION

The Load Description specifies the system's dynamic
behavior. The load on a computer system is the work it
must do, where "work" means the utilization of device com-
ponents for certain time spans. Special programs in this
section, called j o b s , simulate the work of real application
and control program processing by indicating sequences of
hardware utilization commands.

Nearly any kind of deterministic or random effects
may be included in a job to describe which activities are
to be done, for how long, and in what order, The sequence
is controlled by the testing, branching; looping,. and other
logical properties of the job, The simulated time at which
a command is issued depends on the time necessary to do the
work of the previous commands, and on any conditional de-
lays within the job, Appendix A presents a general example
of the progress of simulated time in a job,

The logical behavior of jobs is provided by appropriate
SIMSCRIPT I1 statements, SIMSCRIPT and ECSS statements may be

-5-

freely intermixed in job descriptions. In fact, the full
capability of this general simulation language (described
in Kiviat, Villanueva, and Markowitz, 1968 [2]) is avail-
able as a subset of ECSS. New data structures may be
created and used in the model, for example, to expand the
description of the state-of-the-system or new routines
written to incorporate complex system-control logic.

Simulation time in processing ECSS commands results
from two situations. First, the use of certain device
components is explicitly time-consuming; for example,
executing instructions as directed by an EXECUTE command,
and data transmission as specified by a SEND/RECEIVE state-
mento Second, some commands may or may not allow time to
passp depending on the state-of-the-system. Examples are
conditional delays, indicated by WAIT or HOLD statements,
which depend on whether the condition has come true at
the time the statement is processed. Requests for storage
space or for device allocation, GET and ALLOCATE respec-
tively, may cause delay because that component is already
being utilized, and the job must wait for it to become free.
Execution or transmission commands may also involve this
kind of delay if those components are busy, Priority-
ranked queues are associated with each component of a de-
vice to keep track of pending requests. Marking the end
of utilization of a component, e.ge, with a FREE space or
a DEALLOCATE statement, usually does not hold up job
processing,

to define the jobs and their initiation, These include
JOB--marking the beginning of a job, LAST--marking the end,
START--commanding job initiation, and INITIALLY START--
directing exogenous job-starting to simulate the system
environment,

Several other load commands take zero time, but serve

-6-

SERVICE ROUTINES

The Service Routines take care of the housekeeping
details of internal model control. A collection of
SIMSCRIPT I1 subprograms is used by ECSS to implement the
actions specified by the Load Description. The event-
scheduling and process-pointer management necessary to
realize the flow-orientation of jobs within a SIMSCRIPT I1
context are included. A l l the system-state updating
associated with the interaction of jobs and devices, jobs
and jobs, and devices and devices are incorporated in
these subprograms.

Moreover, this package of routines supplies a number
of such operating-system functions as resource allocation
by priority; 1/0 interrupt handling; device selection from
groups; and queueing, dequeueing, and retrial of device
requests. These capabilities allow easy specification of
multiprogramming, multiprocessing, real-time processing,
and conversational transmissions. The ECSS user auto-
matically gets these capabilities when defining his model's
dynamics.

Appendix B describes a complete ECSS simulation, which
illustrates the use of ECSS in modeling a specific system,
and shows the form and structure of a typical ECSS program.
It also demonstrates the usage of SIMSCRIPT I1 statements
within ECSS.

-7-

111. ADVANTAGES OF THE ECSS APPROACH

NATURAL INPUT LANGUAGE

Both ECSS and SIMSCRIPT I1 statements are English-like,
and their procedural format allows a clear and flexible
design. The user may incorporate his own definitions for
various dimensional units. Considerable freedom for mnemonic
names of devices, jobs, variables, events, etc., is allowed.

Use of a natural, computer-system-oriented input lan-
guage also enhances ECSS as a communication and documenta-
tion tool. Explaining an ECSS model is much easier than
explaining one written in an assembly-style language, or a
higher-level language not specifically designed for computer
system models.

PROVISION OF DECLARATIONS AND COMMANDS FOR COMMON
COMPUTER SYSTEM OPERATIONS

Hardware elements are compactly defined and described
in the System Description, and a variety of utilization
commands for describing loads are provided. Requests for
storage space, job starting, execution, and data trans-
mission require only single statements. The Service Routines
assume much of the modeling burden by handling the details
and providing the built-in operating-system capabilities.

FLEXIBILITY

ECSS provides a variety of techniques for modeling
systems. Both flow-oriented jobs and events can operate
on the system state, depending on the modeler's preference.
Jobs can model program behavior, system input character-
istics, or arbitrary activities running on any appropriate
device, The generality of devices, each having as many
as four components, allows the modeling of nearly any kind
of equipment. No particular structures are forced on the
user.

-8-

No particular level of detail is required of the model.
The example in Appendix B focuses on job-scheduling software
including space reservation, space release, and necessary
execution tirrie, whereas 1/0 interrupt handling, transmission
path selection, multiprogramming, and other control opera-
tions are left up to built-in ECSS functions. In other
models, these operations may be of interest and could be
modeled explicitly. Changes in detail are also readily in-
corporated into a given model,

EXTENDABILITY

ECSS and SIMSCRIPT statements are used in conjunction
to build simulation models. Provision of the data types
and procedural statements of SIMSCRIPT I1 allows the user
to go beyond the primary ECSS capabilities for any purpose.
In addition, the user may extend the definition of a de-
vice, a job, a transmission, or any other ECSS structure
by appropriate SIMSCRIPT preamble statements that add
attributes to these entities. New commands consisting of
combinations of SIMSCRIPT and ECSS statements may be de-
fined as another means of extending ECSS capability.

MODIFIABILITY

For some simulation models, the user may wish to change
certain ECSS operations. A model may require different
disciplines for certain queues, or different job suspension/
reactivation criteria than are included in the standard
ECSS package. Such changes would require modification of
one or more of the Service Routines- This task is aided by
both the modularity of the Service Routines and their de-
scription in SIMSCRIPT 11. The source code for any of
these routines is open to change. Of course, this requires
a fairly good knowledge of the internal working of ECSS,
but the clarity of the SIMSCRIPT code makes change much
easier than if the user had to cope with assembly language,

-9-

RERUN ECONOMY

Simulation models are usually rerun a number of times,
both during development (to debug, test, and validate the
model) and in production (to investigate behavior under
various conditions). ECSS is constructed to avoid recom-
pilation of the model for each run. First, it produces a
summary deck of the static system description, which allows
changing system parameters without reprocessing the System
Description, Second, the object decks representing the
jobs, events, functions, and other routines written by the
user are available for subsequent runs. Finally, the
system and load are independent of each other with respect
to system parameters (e.g., CPU speed, number of disks,
etc.), This allows different systems. and loadsl which
were not originally processed together, to be combined
later as summary decks and object modules, again avoiding
the overhead of recompilation.

-10-

I V . WEAKNESSES O F ECSS

ECSS i s weak i n some a r e a s i n t h e sense t, ,at c e r t a i n
c a p a b i l i t i e s a r e less convenient o r less f l e x i b l e than they
should be. Although it i s p o s s i b l e t o model n e a r l y any
system i n ECSS wi th t h e h e l p of SIMSCRIPT 11, t h e u s e r must
s t i l l work ha rde r than he should have t o f o r c e r t a i n classes
of o p e r a t i o n s . Implementation a s p e c t s , e . g . , running-speed

and core-s torage requi rements , are of secondary importance
a t t h i s s t a g e , and are n o t d i scussed he re .

The d i f f i c u l t y i n coping wi th weaknesses v a r i e s con-

s i d e r a b l y . Leas t d i f f i c u l t i s w r i t i n g e x t r a SIMSCRIPT I1

r o u t i n e s , n o t i nvo lv ing ECSS system v a r i a b l e s , t o i n c l u d e
some o p e r a t i o n not s p e c i f i c a l l y i n t h e ECSS language.
Manipulating ECSS system v a r i a b l e s o u t s i d e t h e Se rv ice

Routines i s moderately d i f f i c u l t because a knowledge of t h e
func t ion and use of t h e s e v a r i a b l e s w i t h i n those r o u t i n e s
i s r equ i r ed . Most d i f f i c u l t i s changing t h e Se rv ice
Routines because t h i s demands an i n t i m a t e knowledge of
t h e i r working and i n t e r a c t i o n . W e d e s c r i b e examples of
some n o t i c e a b l e problems.

NEGLECTED STATEMENTS AND CAPABILITIES

C e r t a i n f e a t u r e s should be inc luded i n a computer sys-
t e m s imula to r t h a t have n o t been inco rpora t ed i n t h i s f i r s t
v e r s i o n of ECSS. Formulating a complete se t of t h e s e
f e a t u r e s i s s t i l l d i f f i c u l t , b u t a few have become apparent .
For example, a l though a l l d a t a are a v a i l a b l e t o t h e u s e r p
no s t a t i s t i c s are au tomat i ca l ly c o l l e c t e d o r r epor t ed by
ECSS. Such t h i n g s as dev ice u t i l i z a t i o n , average wa i t ing
t i m e i n queues, and average queue l eng th are n e a r l y always
of i n t e r e s t i n computer s i m u l a t i o n s o These s t a t i s t i c s
should be c o l l e c t e d and perhaps produced on demand as a
summary r e p o r t , A l s o convenient would be a summary of t h e
s t a t i c system simulated because t h e System Desc r ip t ion may

-11-

be q u i t e complex if h i e r a r c h i c a l groups a r e used. Another
d e s i r a b l e f e a t u r e would be a b u i l t - i n technique f o r s top-
ping and r e s t a r t i n g a model a t any p o i n t , perhaps t o allow
paramet r ic changes, o r t o account f o r i n i t i a l i z a t i o n pe r iods .
There i s , fur thermore , very l i t t l e cons i s t ency checking of
t h e model a t t r a n s l a t i o n t i m e o r run t i m e . ECSS should do
more t o f l a g s e l f - c o n t r a d i c t o r y o r i l l o g i c a l System
Desc r ip t ions .

Severa l common computer ope ra t ions now must be modeled
i n SIMSCRIPT 11, and probably deserve s p e c i f i c ECSS s ta te -
ments t o handle them. A s t a t emen t t o change job p r i o r i t i e s
du r ing t h e i r run would c o n t r i b u t e convenience and c l a r i t y
t o a model, p a r t i c u l a r l y when s imula t ing such opera t ing-
system func t ions as t a s k schedul ing o r i n t e r r u p t masking.
Another missing c a p a b i l i t y i s d a t a - f i l e placement on s t o r a g e
dev ices f o r f i l e - a c c e s s modeling. Although f i l e s may now
be placed on s p e c i f i c d e v i c e s , or a l l o c a t e d from groups of
dev ices , it would be q u i t e handy t o have s t a t emen t s i n d i -
c a t i n g f i l e p o s i t i o n on a dev ice f o r c a l c u l a t i o n of v a r i -
a b l e access t i m e s f o r sequences of t r ansmiss ions from
d i f f e r e n t f i l e s on t h e same dev ice . A t h i r d d e f i c i e n c y i s
lack of b u i l t - i n p o l l i n g ope ra t ions . A l l service r e q u e s t s
are handled i n a p r i o r i t y - i n t e r r u p t f a sh ion i n ECSS. How-

eve r , many a p p l i c a t i o n s r e q u i r e t h e s e r e q u e s t s t o be handled
d i f f e r e n t l y . For example, remote t e rmina l s are o f t e n p o l l e d

i n a p a r t i c u l a r o r d e r t o determine t h e i r t ransmiss ion s t a t u s ,
r a t h e r than each s i g n a l i n g t h e r e c e i v e r through an i n t e r r u p t
mechanism. Inco rpora t ion of a r b i t r a r y (or changing) s e r v i c i n g
o r d e r i n models would be expedi ted by ECSS s t a t emen t s t h a t
s p e c i f i c a l l y s imula t e p o l l i n g .

HARD-TO-GET-AT MECHANISMS

Cont ro l of mechanisms invoked only by d e c l a r a t i o n i s
s o m e t i m e s d e s i r e d i n t h e Load Desc r ip t ion , One i n s t a n c e i s

-12-

t h e deg rada t ion of i n s t r u c t i o n execut ion r a t e a s dec la red by

a DEGRADES c l a u s e i n t h e System Desc r ip t ion . Reductions
i n execut ion r a t e may occur f o r o t h e r reasons than t r a n s -
miss ion i n t e r f e r e n c e . M u l t i p l e CPUs contending f o r t h e

same core memory w i l l g e n e r a l l y n o t run as f a s t a s if only
one CPU had access t o t he memory, T h e deg rada t ion mechanism
could e a s i l y handle such c a s e s i f t h e u s e r had more d i r e c t
c o n t r o l over it when s p e c i f y i n g jobs .

Software overhead i s ano the r d e c l a r a t i v e f e a t u r e t h a t
could be m o r e a c c e s s i b l e . I n t h e ba tch model, a l l o c a t i o n
t a k e s 50 msec of overhead t i m e , b u t a v a r i e t y of o t h e r
a c t i v i t i e s - - j o b i n i t i a t i o n , t a s k swi t ch ing , o r co re s t o r -

age reservatio'n--may a l s o t a k e t i m e t h a t should be counted
a s overhead. Hence, t h e u s e r should be a b l e t o i n d i c a t e
overhead t i m e f o r a v a r i e t y of o p e r a t i n g system f u n c t i o n s ,
o r perhaps a t any t i m e he wishes l t o r e a l i z e g r e a t e r u t i l i t y
of t h e overhead accumulation procedures .

OVER-AUTOMATICITY

The u s e r may a l s o need g r e a t e r c o n t r o l over t h e func-
t i o n s of Load Desc r ip t ion s t a t e m e n t s . Sometimes these
s t a t emen t s au tomat i ca l ly do more than t h e u s e r d e s i r e s .
When a c q u i r i n g s imula ted s t o r a g e space , f o r example, t h e

ECSS GET s t a t emen t n o t only f i n d s and r e s e r v e s space , b u t
a l s o causes t h e r e q u e s t i n g job t o w a i t f o r space if enough
i s n o t a v a i l a b l e a t r e q u e s t t i m e . One may i n s t e a d want t o
r e t u r n t o p rocess ing with a n o t e i n d i c a t i n g an unsuccess fu l
r e q u e s t i f s u f € i c i e n t space i s not a v a i l a b l e . That i s , one
may w i s h on ly t o use those p a r t s of GET t h a t f i n d t h e maxi-
mum amount of space a v a i l a b l e and compare it t o t h e amount

r e q u i r e d , and n o t t h e p a r t t h a t queues unsuccess fu l re-
q u e s t s f o r r e t r i a l ,

A s i m i l a r problem also occurs when SENDing d a t a . I t

i s p o s s i b l e t o s p e c i f y t h a t a message be conveyed from one

-13-

job to another by means of a data transmission. These
messages are often used to activate further processing of
jobs waiting for them, Instead of terminating and re-
starting a job, for example, it may be more realistic to
suspend and reactivate it by means of a "clock interrupt."
This involves only the signaling features of the SEND

statement, all communication being within a processorp but
there is no way of simply signaling without all the path
selection and other data transmission machinery. Other
cases could be mentioned that illustrate a need to use only
part of the power of a Load Description statement,

AWKWARD CONTROL-PROGRAM REPRESENTATION

Although the automatic operating system is a great
help in some models, the distribution of control functions
between the Service Routines and user-written jobs makes
for a sometimes strained relationship between the model and
the real system being simulated. Jobs simulating control-
program functions may not interface smoothly with the de-
fault ECSS system, particularly if different algorithms
are desired for other kinds of queue handling, resource
management, or for controlling the order of occurrence of
internal model events. Low-level changes in these opera-
tions usually require extensive changes both to the Service
Routines and to the jobs representing the load's simulated
software, Moreover, the code implementing the new operating-
system functions may be scattered over parts of several
routines, thereby decreasing model clarity, It would be
desirable to keep most or all of user-specified control-
program models in one place! either through a number of
"operating-system-jobs" or some other unifying concept.

-14-

V. DESIGN CONSIDERATIONS FOR FURTHER ECSS DEVELOPMENT

Po in t ing o u t weaknesses i n something under development

i s u s u a l l y tantamount t o say ing how it w i l l be improved,
R e f l e c t i o n on t h e s e weaknesses has i n d i c a t e d some g e n e r a l
p r i n c i p l e s i n des igning computer system s imula t ion l an -
guages t h a t may be used t o a n t i c i p a t e and c o r r e c t d i f -
f i c u l t i e s b e f o r e they i n t r u d e i n t o some new a p p l i c a t i o n of
t h e language

DECLARATIVE VERSUS PROCEDURAL DESCRIPTION

Although d e c l a r a t i v e s p e c i f i c a t i o n of system f e a t u r e s
i s m o s t convenient , p rocedura l s p e c i f i c a t i o n i s more f l e x -
i b l e . Because one cannot a n t i c i p a t e a l l p o s s i b l e types of
i n t e r a c t i o n , a l l i n t e r a c t i o n mechanisms should be a c c e s s i b l e

t o procedura l c o n t r o l so t h a t t h e u s e r can make t h e f u l l e s t
u s e of provided c a p a b i l i t i e s . D e c l a r a t i v e s p e c i f i c a t i o n s
should be r e t a i n e d , however, f o r t h e i r convenience, and
perhaps even expanded t o f u r t h e r parameter ize t h e b u i l t -
i n o p e r a t i n g system (e .g . , more o p p o r t u n i t i e s f o r overhead
t i m e s p e c i f i c a t i o n) .

STATEMENT SCOPE

J u s t as one cannot a n t i c i p a t e a l l p o s s i b l e i n t e r a c t i o n
t y p e s , one cannot f o r e s e e a l l t h e combinations of ways t o
command t h e system components. Var i ab le s o p h i s t i c a t i o n of
d e t a i l r e q u i r e s g r e a t e r u s e r c o n t r o l over t h e a c t i o n s of
t h e Load Desc r ip t ion s t a t emen t s . Powerful s t a t e m e n t s , i n -
co rpora t ing a number of o p e r a t i o n s i n a predetermined
sequencep are necessary t o q u i c k l y develop coa r se models.
For more d e t a i l e d modelsp each o p e r a t i o n should be a v a i l -
a b l e s e p a r a t e l y - Cont ro l a t a lower f u n c t i o n a l level
a l lows t h e same Se rv ice Routine mechanisms t o be a r ranged

i n a g r e a t e r number of ways without t h e chore of a l t e r i n g

-15-

their structure. The inclusion of more optional clauses
for statements may ease the transition from coarse to fine
levels of detail during model development,

OPERATING-SYSTEM ACCESSIBILITY

Service Routine alteration could also be avoided by
inclusion of a number of exit points to user routines.
Such a "monitor" is now included, but operates as an
observer telling what the system did, not what it is about
to do, Substituting an active monitor, with the power to
skip some of the built-in operations on command, would
provide more flexible use of the ECSS operating-system
features.

AUTOMATIC SUMMARIES

A computer system shc Id incl de automatic collection
of statistics, and automatic output of statistical and
other summaries, in addition to user access to all opera-
tions data. Certain quantities (e.g., device utilization,
queue lengths, etc,) are of known importance, and statistics
on them should be collected. Preformatted reports of these
statistics would provide a convenient overview of model
operation* Machine- and man-readable system structure
summaries could further make the simulation clearer to the
user, and aid in rerunning the model. Trace output should
also be available on demand (perhaps through the monitor),
but undesired volumes of operations data should be avoided.

-16-

VI., CONCLUSION

Use of the initial version of ECSS has shown it to be
a convenient and powerful analysis tool. Its provisions
for describing both common computing system elements and
operations ease much of the modeling burden; its extenda-
bility and modifiability insure suitability for uncommon
applications. Further developments on the prototype are
proceeding as outlined in this Report.

-17-

Appendix A

ECSS JOB PROCESSING

An ECSS job is a specification of a sequence of ac-
tivities. An activity is the utilization of a simulated
device for some amount of simulated time as directed by
a hardware utilization command. Hence, the simulation
clock may advance during the processing of a job. Figure 2
illustrates the concept of job processing and the effect
of logical statements and conditional delays on the pro-
gress of simulated time within a job.

One may think of a process-pointer moving through a
job, indicating which statement is being processed. In
Fig. 2 , the job SHOW.TIMING is initiated at to, and the
pointer starts at the first statement. This happens to
be a command that takes time tl, so processing does not
proceed to the next statement until time to + tlo
statements may then redirect the process-pointer: If
VARIABLE > 0, then processing jumps to the point labeled
'NEXT' in the job (right-hand time column); otherwise,
Commands 2 and 3 are processed (left-hand time column),
requiring t2 + t3 more simulated time to pass.
delays may suspend job processing. The process-pointer
will not go beyond the HOLD statement until "input" has
arrived at tin, but if input has already arrived, proces-
sing will proceed directly to Command 4. This flow-
orientation of jobs, resembling GPSS [3] , is extremely
useful in modeling computer system loads,

Logical

Conditional

-18-

n -
c

E .- c
6
Y u
c v

c

-0
S

E
Eo v

-

0 c

-

h

0
c

E .-
c

6
Y o
c v

e7
-0
S

E"
Eo v

n

2 .- c
O
S

Q)
Y u
v)

c v

I

I-

tl

c

+
0

4-

.-
c

+
0
L

-

n * c

E .- c
6
Y o
4- v

TI-
-0
S

!i!
Eo v

S .-
.I-

-

E
c

n

u, c

E
0- c

6
E
Y

v

v)

u
S

E"
Eo v

-

-=t c

+
S .-

.I-

-

P

E
+
c

t;
4

m c

+
+"
+

S .-
c

-

m c

+
*

4-

+
E c

m
S

v)

v)

a,
V
0
b
n

*r

n
0
3

v)
v)
w
I
I

(u

cn
L L
-r

-19-

Appendix B

AN EXAMPLE OF THE ECSS APPROACH

This appendix p r e s e n t s a s i m p l i f i e d model of a mul t i -
programmed batch-processing system t o i l l u s t r a t e t h e
s t r u c t u r e and o p e r a t i o n of an ECSS s imula t ion program.
This example has no t been cons t ruc t ed t o demonstrate good
system des ign .

F igure 3 shows t h e system hardware conf igu ra t ion . A

processor connects through t h r e e 1/0 p o r t s t o a ca rd reade r
and t w o c o n t r o l l e r s t h a t i n t u r n are connected t o fou r
d i s k s . The sys tem's load c o n s i s t s of d i s k f i l e updat ing
r o u t i n e s , a sequence of which a r e en te red by means of t h e
ca rd reade r . The flow of t a s k s through t h e system i s
diagrammed i n F ig . 4 . I n a d d i t i o n , some s imula ted s o f t -
ware i s inc luded i n t h e load t o schedule jobs according
t o t h e i r space requirements and t o handle d i s k a l l o c a t i o n .

F igure 5 l i s t s t h e model's e n t i r e s imula t ion program.
Some comments appear i n p a r e n t h e s i s ; each s ta tement has
been numbered; and SIMSCRIPT s t a t emen t s are marked wi th
an (S) . Besides t h e System and Load Desc r ip t ions men-
t i oned above, t h e l i s t i n g shows a preamble, a d e f i n i t i o n -
d e s c r i p t i o n s e c t i o n , s o m e even t s , and t h e M A I N r o u t i n e .
The preamble (s t a t emen t s 1-11) d e f i n e s g l o b a l v a r i a b l e s
and o t h e r d a t a s t r u c t u r e s t o be used i n t h e model. The
d e f i n i t i o n s e c t i o n (12-15) i s an a d d i t i o n a l ECSS element
t h a t a l lows r e l a t i o n of user-def ined t e r m s t o b a s i c ECSS

terms (wi th p o s s i b l e conversion f a c t o r s) f o r use i n t h e
System and Load Desc r ip t ions . Because no s t a t i s t i c s are
c o l l e c t e d o r r epor t ed by ECSS, t h e even t OBSERVATION (24-29)
i s used i n t h i s program t o view t h e system every f i v e
seconds, and t o p r i n t a record of i t s a c t i v i t y . Q U I T S I M

(s ta tement 30) h a l t s t h e s imula t ion . F i n a l l y , t h e MAIN
r o u t i n e (31-35) i n d i c a t e s when t o s t o p and when t o make
t h e f i r s t obse rva t ion , I t then d i r e c t s t h e s imula to r t o

commence e

L

In In
0

e,
U
0

LL
L

In L
e, -
0
L .I-

S
0

V

-20-

S
0

c,
rb
L

.r-

=i
Is,

01
L
rb
3
-0
L
la
I

7

at
-0
0 z
I
I

m

m

L L
*r

-21-

Job stream

I npu t
queue

Fig. 4--Work Flow Through Multiprogrammed Batch Processor

-22-

PREAMBLE (defines global variables-and data structures)
DEFINE TOTAL.IN.TIME AS A REAL VARIABLE
DEFINE JOBS.STARTED, JOBS.COMPLETED, JOBS.IN.PROCESS
AS INTEGER VARIABLES

TEMPORARY ENTITIES
EVERY JOB.DESCRIP HAS A SPACE.REQMT, A LOOP.REQMT
AND A TIm.IN AND BELONGS TO THE JOB.QUEUE

DEFINE SPACE.I?EQMT, TIME.IN AS REAL VARIABLES
DEFINE LO0P.REQMT AS AN INTEGER VARIABLE
THE SYSTEM OWNS A JOB.QUEUE
DEFINE JOB.QUEUE AS A SET RANKED BY HIGH SPACE-REQMT

EVENT QOTICES INCLUDE OBSERVATION,QUITSIM
END

12 m DEFINITION DESCRIPTION (incorporates user terminology)
13 .a DEFINE UNITS KBYTES=1000 TRANSMISSION.UNITS,

14. DEFINE UNITS SUBROUTINES=800 INSTRUCTIONS
15 e END

KWORDS=SPACE.UNIT

16 e SYSTEM DESCRIPTION (defines characteristics of each

17 SPECIFY 1 PROCESSOR,

(execution rate)

class of devices)

EXECUTES 200 INSTRUCTIONS PER MILLISECOND

TRANSMITS 2000 KBYTES PER SECOND (transmission rate)
HAS CAPACITY OF 3 TRANSMISSION USERS (models

CONNECTS TO CONTROLLERS
DEGRADES PROCESSOR BY 10% PER 200 KBYTES/SECOND

HAS CAPACITY OF 256 KWORDS (storage space)
ALLOCATES DISKS IN 50 MS (models gross software effect)

3 subchannels)

(models cycle-stealing)

18. SPECIFY 2 CONTROLLERS, EACH
HAS CAPACiTY OF 1 TRANSMISSION USER
CONNECTS TO DISKS,PROCESSOR

19 * SPECIFY 4 PUBLIC DISKS, EACH
HAS CAPACITY OF 1 TRANSMISSION USER
ABSORBS 92.5 MILLISECONDS PER MESSAGE (access time)
TRANSMITS 156 KBYTES PER SECOND (disk transmission rate)
CONNECTS TO CONTROLLERS

20 e SPECIFY 1 CARD.READER, CONNECTS TO PROCESSOR

21 0 PATH OUTPATH IS PROCESSOR,CONTROLLERS, DISKS
22. PATH INPATH IS DISKS,CONTROLLERS,PROCESSOR
23. END

., (S) EVENT OBSERVATION SAVING THE EVENT NOTICE
(S) RESCHEDULE THIS OBSERVATION IN 5 UNITS (seconds)

26, (S) LET AVG.TURNAROUND=TOTAL.IN.TIME/JOBS.COMPLETED
(calculate statistics)

27. (S) LET AVG.THRUPUT=JOBS,COMPLETED/TIME.V
28. (S) LIST TIME.V,JOBS,STARTED,JOBS.IN.PROCESS,JOBS~COMPLETED~

AVG.TURNAROUNDpAVG.THRUPUT (print out statistics)
29 . (S) END

STOP END

-23-

31
32 e

33 *
34
35 m

36.

37 a

38 e
39 e

40.
41.
42 e
43.
44.

45

46.
47.

49.
50.
51 e

52.
53.
54 e

55 0

56.
57 e

58.
59 D
60.
61.
62
63.

64 e

65.
66.
67.
68.
69.

70
71 e

72
73 0

74 e
75 0

76
77 a
78

FIA IN
SCHEDULE A QUITSIM AT 35
SCHEDULE AN OBSERVATION AT 5
START SIMULATION

END

LOAD DESCRIPTION

JOB READER
(defines sequences of system utilization commands)

CREATE A JOB-DESCRIP
LET SPACE.REQMT(JOB.DESCRIP)=EXPONENTIAL.F(104~0,1)
READ LOOP.REQMT(J0B.DESCRIP)
LET TIME.IN(JOB.DESCRIP)=TIME.V
ADD 1 TO JOBS.STARTED
FILE JOB.DESCRIP IN JOB-QUEUE
START JOB READER ON CARD .READER

LAST
IN EXPONENTIAL.F(l2.0,l) SECONDS

JOB INITIATOR
IF JOB.QUEUE IS EMPTY,
START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2 IN 1 SECOND
RETURN
ELSE

REMOVE THE FIRST JOB.DESCRIP FROM JOB.QUEUE
ADD 1 TO JOBS.IN.PROCESS
EXECUTE 100 INSTRUCTIONS (space reservation processing)
GET SPACE-REQMT (JOB.DESCRIP) CONTIGUOUS KWORDS FROM PROCESSOR
START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2
EXECUTE 500 INSTRUCTIONS (job initiation processing)
START JOB APPLICATION(LOOP.REQMT(JOB.DESCRIP)) ON PROCESSOR

FREE SPACE.REQMT(JOB.DESCRIP) KWORDS FROM PROCESSOR
SUBTRACT 1 FROM JOBS.IN.PROCESS
ADD 1 TO JOBS.COMPLETED
ADD T1ME.V-TIME.IN(JOB.DESCR1P) TO TOTAL.IN.TIME
DESTROY THE JOB.DESCRIP
LAST

WITH PRIORITY 1 WAITING HERE FOR COMPLETION

JOB APPLICATION (REQD.LOOPS)
DEFINE REQD-LOOPS AND L AS INTEGER VARIABLES
ALLOCATE DISKS# 1 AS 1NPUT.FILE
ALLOCATE DISKS AS 0UTPUT.FILE
FOR L=l TO REQD-LOOPS DO . * .
RECEIVE RECORD "BLOCK OF DATA" OF LENGTH 800 FROM
1NPUT.FILE VIA INPATH WAITING HERE FOR COMPLETION
(read data)

EXECUTE 10 SUBROUTINES (process data)
SEND RECORD OF LENGTH 160 TO 0UTPUT.FILE VIA OUTPATH

LOOP
WAITING HERE FOR COMPLETION (write data)

DEALLOCATE 1NPUT.FILE
DEALLOCATE OUTPUT-FILE
LAST

INITIALLY START READER ON CARD-READER (initialize the system)
INITIALLY START INITIATOR ON PROCESSOR WITH PRIORITY 2
END

-24-

MODEL OPERATION

The ECSS job READER (37-45) models the input environ-
ment of the system. This consists of units of work sub-
mitted at exponentially distributed times, with a mean of
12 seconds. The work is characterized by its space re-
quirement, selected from an exponential distribution with
a mean of 104 (KWORDS) and a duration parameter,, represented
as the number of simulated processing cycles, which is read
in from a data card. Work to be done is placed in a queue,
JOB.QUEUE, and ranked on its space requirement from high to
low, SIMSCRIPT I1 provides the definition and manipulation
statements for this queue. The use of JOB.QUEUE augments
the default ECSS job-scheduling procedures.,

The prototype for the work to be done is the APPLICATION
job (64-75), which runs on the processor. First, one disk
is designated as the input source and one of the disks is
selected randomly (by the built-in ECSS operating system)
as the output unit by the ALLOCATE statements. This task
is considered to require 50 msec of overhead time per al-
location (from 17), and hence the processor's execution
component is busy for 100 msec as well as the allocatable
component of the disks being set. Because the disks are
PUBLIC, more than one job can use them simultaneously.

Next, the APPLICATION job begins the simulated reading
of blocks of data, processing of the data, and writing of
an output record (69-71). The RECEIVE statement picks a
free data path from the INPUT-FILE disk, through one of
the controllers, to one of the 1/0 ports of the processor,
The job automatically waits for a free path if none is
availables Transmission components of these devices are
then busy f o r the duration of the disk access time
(92.5 ms), plus the time for transmission of 800 bytes
at 156 kbytes/sec (disk speed), APPLICATION job proces-
sing is suspended for that time, as directed by the

-25-

WAITING c l a u s e (6 9) . The processor execut ion component i s
then busy s i m u l a t i n g t h e execut ion t i m e f o r 1 0 sets of 400
i n s t r u c t i o n s (SUBROUTINES) a t 2 0 0 , 0 0 0 i n s t ruc t ions / second .
F i n a l l y , t h e SEND s ta tement goes through a s imi l a r procedure
a s t h e RECEIVE t o model w r i t i n g t h e ou tpu t record . The
j o b ' s l a s t a c t i o n i s t o reset t h e a l l o c a t i o n s t a t u s of t h e
d i s k s it used, i . e . , free them, which t a k e s no s imula ted
t i m e i n t h i s model.

A schedul ing a lgor i thm i s modeled i n t h e I N I T I A T O R job

(46-63). I t s ta r t s APPLICATION jobs i n t h e o rde r determined
by t h e JOB-QUEUE, i . e . , l a r g e jobs f i r s t (i f t h e queue i s
empty, an I N I T I A T O R t r ies aga in i n one second) . Execution
t i m e f o r schedul ing i s modeled wi th t h e f i r s t EXECUTE

s t a t emen t (5 3) . The GET s t a t emen t (5 4) r e s e r v e s a con-
t iguous block of t h e p r o c e s s o r ' s s t o r a g e space necessary
t o s a t i s f y t h e space requirement. I f n o t enough space i s
a v a i l a b l e , t h e I N I T I A T O R job i s suspended u n t i l space i s
a v a i l a b l e . When space i s r e se rved , ano the r I N I T I A T O R i s
s t a r t e d (f o r t h e next JOB.&UEUE work u n i t) and some execu-
t i o n t i m e , r e p r e s e n t i n g job i n i t i a t i o n bookkeeping, i s
c a l l e d f o r (55-56). Following t h a t , an APPLICATION job i s
s t a r t e d on t h e p rocesso r , pass ing i t s d u r a t i o n as an
argument. Upon completion, t h e I N I T I A T O R proceeds t o re-
lease t h e space f o r t h a t u n i t of work (58), and t e rmina te s .

Seve ra l INITIATOR and APPLICATION jobs may be running
concur ren t ly on t h e processor i n a multiprogrammed fa sh ion .
Content ion f o r dev ices i s reso lved by p r i o r i t y (n o t e t h a t
I N I T I A T O R jobs wi th p r i o r i t y 2 w i l l always g e t a dev ice
be fo re an APPLICATION j o b) , then by t i m e of r e q u e s t . This
i s performed by t h e Service Routines. S c a t t e r e d through-
o u t t h e jobs are va r ious SIMSCRIPT I1 s t a t emen t s t h a t
co l lec t t h e d a t a p e r i o d i c a l l y r epor t ed by t h e OBSERVATION
event . F igure 6 shows some t y p i c a l ou tpu t from t h i s simu-

l a t i o n program.

-26-

E
3
pc

x
E
2

0
0

E O
3 0
P I 0 0

0
0
c\1

W

5
u
5

u z C!J
3
4

c7 z
n

0
ffi
4

3
E-i

i5

E

cI\
cn
03
W
4
rl

N

c3
5 c,

=I
Q
c,
S
0

E
ccl
L
ul
0
L
a
7

a,
W
0
E

-c
0
c,
ccl

I
I

L o

m

ul

Lc
*r

nrl nN noJ tam n m w w M w w
E E E E E w w M w w
I4 GI 4 t7 I4
pc PI PI PI

V
E
0 u V V V

8 8 0 5: B

c n r l w u

p1
2

m 0 w
V

PI
2

COO
M
V

pc
2

VlO w
U
0
p:
PI

E E z
H

m
Q
0
kl

z
H

cn
0
b
a cn

0
kl

a cn
0
b

a a
0
b

n m w
E
ffi

cn 3

a m w
E
p:

cn 3

n m w
E
ffi
3
UI

ncu w z
2 cn

n m w
E
ffi

m 2
cn
0
b
a cn

0
b
a ul

0
b

a cn
0
b

a cn
0
b
a

3 0
M O
E O
H O
E O

0
N

-0
3 0
e o

2 z
H O
E O

m
N

4 0

2:
H O
E O

-27-

REFERENCES

1. Neilsen, N. R,, ECSS: A n E x t e n d a b Z e Computer S y s t e m
S i m u l a t o r , The RAND Corporation, RM-6132-NASAI
February 1970

2. Kiviat, P , J., R. Villanueva, and H . M , Markowitz, The
S I M S C R I P T 11 Programming L a n g u a g e , Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1968.

International Business Machines, Inc,, Form H 2 0 -
3. G e n e r a l P u r p o s e S i m u l a t i o n S y s t e m / 3 6 0 , U s e r ' s M a n u a l ,

0326-2, 1968.

